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ABSTRACT 

This report discusses the design »nd synthesis of low-nass and 

band-nass one-aimensional and two-di-nensional soatial filters using 

arrays or matrices of detectors.    The synthesis was nerformed for 

alternate assumptions of negligible end significant detector gaps. 

The detector width and the detector weighting functions are the two 

uptimized parameters» 

A frequency analyzer, using a narrow-band one-dimensional filter, 

was de?ig ,j and simulated.    Tests indicated oe^ffrnance as exoected. 

J.  A.  Jsmieson,  Manager 
Research and ijeveloment 
Astrionics Division 
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SYMBOLS 

J^ weighting coefficient of ith detector 

i Indexing variable on X axis 

W width of detector plus gap 

i TTTT 

m special frequency in cycles/unit length 

Fi(ra) transfer function of ith detector 

F* {'&) transfer function of detector array 

n number of detectors on either side of the origin 

Fp    (m) ideal pass band transfer function 

FSB (m) ideal stop bai.J transfer function 

m cut-off frequency 

A filter error 

E mean square error 

K limit of optimized spatial frequency domain 

¥ gap between detectors 

g ratio of gap width to detector width 

Yl number of loops in an ideal filter function 

f (x) space function 

N' (x) detector density 

ja density constant 

x» upper limit in space domain 

H- t , total number of detectors right of the origin 
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SYMBOLS (cont. ) 

f value of the spatial function at a maximum 
max 

f . value of the spatial function at a minimum 

m, spatial frequency axis corresponding to x direction 

au spatial frequency axis  corresponding to y direction 

m cut-off frequency on m axis 
^1 ^ 

m cut-off frequency on mp axis 
C2 ^ 

k indexing variable on y axis 

A.. weighting coefficient of i, k detector 

W, width of detector in x direction 

W0 width of detector in y direction 

0 (m,, mp) envelope function in two dimensions 

|f {m,, m„) edge function in two dimensions 

nu» location of filter approximation zeros on m, axis 

nu,-, location of Tilter approximation zeros on m0 axis 

a all integers 

ap all integers 

0 angle of scan measured from x axis 

p radial frequency coordinate 

n an integer 

n a real number 

60 epatial frequency in radians per unit length 

F (m) approximating spatial frequency function 
3. 
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SYMBOLS (cont.) 

Fe (a) difference between F(m) and Pa{m), that is, F(m) - Fa(m) 

£ integral of squared error 

a detector weighting 

b detector shortening coordinate 
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'-^x, & tw)-dimensional spatial frequency variables in radians 
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Jo,  J, Bessel functions of the first kind 
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a n 

cutoff frequency of a circularly symmetric ideal low-pass 
spatia1 filter 

r
n detector radius 

al 
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= - g" , a substitute variable 
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z = rn "c' li  substitute variable 

r reduced detector radius 
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I.   INTRODUCTION 

A.   GENERAL 

Recently, the detector mosaic concept has become the basis of many new 

optical processe«1. In long wavelength reconnaissance systems, terminal guidance, 

and pattern detection in particular, image dissection has bee., found a pre- 

requisite. These systems contain a restively large numb r of input detectors 

for parallel processing and recognition of the object with h'gh resolution and 

high value of signal to noise. 

A spatial filter, as defined by this study, also uses a detector 

mosaic as the input. Its function in space is analogous to classical time 

filtering in that it scans space and selectively passes d^atlal frequencies. 

A spatial filter, in effect, performs a convolution in space.  Its 

space function, or transient response, analogous to the system function in time 

filtering, is constructed by weighting each detector in the array. The weighted 

detector signals are summed. The output signal of the summing network at a 

fixed position of the detector array corresponds to one point cf the convolution 

Integral. As the ar'-ay is scanned over a scene, a new scene is generated whose 

spatial frequency spectrum is the product cf the filter transfer function (the 

Fourier transform of the space function) and the original scene's spatinl 

frequency spectrum. 

Spatial filters can be one-dimensional, in which case, the detectors 

are rectangular and the scan motion is parallel to the snort dimension. Spatia.' 

filters can be two-dimensional in which case, the detector dimensions are then 

determined by the syrom^tr/ of the filter transfer function. For example, if the 

transfer function is circularly symmetric in the frequency domain, the detectors 

also will be circularly symmetric in the form of annul!. A two-dimensional 
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filter can take any form so long as it has qufldrantal symmetry with respect to 

both frequencies' axes; that is, positive and negative frequency must be filtered 

identically. 

The  spatial filter has certain fundamental limitations. For example, 

a high-pass transfer function cannot be generated because it would require 

detectors of infinitesimal size. But. its relative simplicity and the ease with 

which its operation can be generalized (by employing adjustable weights, for 

example) support arguments for Investigation of the spatial filter as a po- 

tentially valuable technique in electro-optical processing. 

Previous work (Appendix A) has reported an approximation method for 

the design and synthesis of a one-diiuensional low-pass and a band-pass spatial 

filter. The method consisted of approximating the transient response of the 

filter with a linear, finite-width array of rectangular detectors. The analysis 

ircluded a parametric evaluation of approximation accuracy as a function of 

detector size and number. 

The continued study was visualized as aiming toward a synthesis 

procedure which could be useful for design in any specific problem. To demonstrate 

the value of the technique, the classical problems of low pass and band-pass 

filters with infinite attenuation at the cutoff frequencies were treated as 

examples. The  effects of various parameters in approximation of these functions 

vere then evaluated. It is believed that practical problems do not present such 

tight specifications. Therefore the approximation in a real case would be per- 

formed with greater accuracy. 

In a general sense, detector size, gaps between detectors, and 

detector geometry are parametrically as significant in spatial filter design, 

as the detector weights. As a starting point in the general analysis, one can 

assume that minimization of detector number is i-nportant and that close approxi- 

mation to some ideal filter response is desired. Emphasis on various aspects of 

the response function results from a choice of approximation criteria.  One might 

choose, for example, to optimize for least-mean-square-error over a region of 

interest, or to optimize for least-mean-absolute-error.  Or, as in time filtering, 

maximally flat criteria might be chosen. To a limited degree, one can estimate 
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simply the errors resulting from certain approximation methods. Many minimum-error 

optimizations, hovever, can be accomplished only through iterative computations 

best implemented with a high-speed digital computer. 

Aside from its value in spatial filtering, a detector array has the 

advantage in image forming of mechanical simplicity over a single scanned detector. 

By combining this stationary image-forming capability with the spatial filter 

concept, recognizable patterns are obtained without mechanical scanning. A 

frequency analyzer which embodies this combination was, therefore, proposed and 

simulated. 

l^ius, the purpose of the study herein reported was to determine in 

greater dei-ail the properties and parametric potential of the spatial filter. 

Because the spatir. filter employs a detector array (either one- or two-dimensional) 

ot variable size, and because the fabrication problems of detector arrays and 

processing electronics will determine the feasibility of various applications, 

establisning the parametric sensitivity of th, concept is a matter of practical 

importance. 

The  initial sections of the report develop the analytical theory for 

several logical approximations in both one- and two-dimensions. Particular 

emphasis is placed on the least-mean-square error (UCE) approximation because 

of the relative ease in computing the optimization. Several analyses develop 

the theoretical problems of special geometries. In these cases, the actual 

computation of filter approximations was considered unjustified at this time 

and the analytical results are summarized in order that the study of these cases 

may be continued later if desired. 

The  later sections iummarize the numerical and experimental work and 

compare the various filter approximations.  'Die practical implications of the 

experimental results are also developed. 

B.   SUMMARY OF PROGRAM GOALS 

Hie program started on 1 July 196U and was organized into the following 

tasks: 

1. Optimization of detector size 

2. Extension to two-dimensional synthesis 

Page 1-^ 
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5.   Background discrimination and target detection 

k. Frequency analyzer 

5.   Multicolor correlation synthesis. 

A mid-term presentation was made to Mr. P. Nutting of ARPA on 26 

October 1964 to report the results of the contract and to concur on the direction 

of the remainder of the effort. Mr. Nutting suggested that more emphasis be 

placed in the detector optimization, considering detector gaps as another parameter 

and de-emphasize the color correlation and target detection.* The program was 

scheduled accordingly. Figure 1 shows the schedule and performance of each phase. 

1. The  first phase entaiied the evaluation of an optimization 

scheme which could be used for detector width and weighting function. 

2. ihe second phase was an extension of the synthesis procedure to 

two-dimensional aetector arrays. A least-mean-square-error criteria was developed. 

3. The third phase consisted of a synthesis procedure for practical 

detector arrays including detector gaps. The procedure developed in the first and 

second phase was implemented in this phase. 

k.        The  fourth phase consisted of a numerical solution of the above 

three phases to evaluate the effect of detector parameters on the filter response. 

5* The fifth phase consisted of developing a theory design and 

fabricating a frequency analyzer for experimental verification of the spatial 

filter theory. 

The importance of gaps should be observed in practical design. In a one- 
dimensional or two-dimensional mosaic array, fabrication and interconnection 
requirements necessitate some gaps between detectors. Therefore a practical 
synthesis technique should recognize their existence.  In addition, con- 
siderations of economy often prescribe a maximum number of detectors for a 
particular application. It is not clear that 1  uniform, closely packed 
arrangement will achieve the most precise synthesis. Variable sizes, non- 
uniform distributions and provision of gaps may be preferable. An opti- 
mization analysis should investigate gap width as a parameter. The 
numerical solution discussed :n this report shows that gaps can be 
introduced to advantage. 
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c. summ OF PROGRAM RESULTS 

In summarizing the results of the spatial filter study ve conclude; 

1. Minimization of least-mean-square error is a successful method 

of approximating spatial filter functions.    For many approximations the conventional 

technique coincides with this approach. 

2. Detector gaps with regular spacing tend to degrade the filter 

perfomance, but in certain cast^  (Section IV) with a limited number of detectors, 

variable gaps can improve the overall filter response. 

5.        Two-dimensional squa-e-response filters can be approximated 
with a cross detector array. 

h.        Wnen a square-response filter is approximated with a square 

detector array, th- approximation in the scop band imp-oves on axes between the 

x and y axes, but the pass-band ripple is worse. 

5- Narrow-band spatial fil-cers can be satisfactorily simulated 

with transparencies and the operation of a non-scanning frequency analyzer has 
been demonstratec. 

6.        One additional approximation method, detector density distri- 

bution proportional to space function slope, has been explored analytically. 

7-        The space domain least-mean-square-errjr {LMSEj method produces 
accurate approximations with a minimum of computation. 

These results, along with the specific parametric data are significant 
in any future filter design. 
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II.       SYNIKSSIS OF QNE-DIMENCIQNAL SPATIAL FILTER 

A. LEAST-MEAN-SQUARE-ERROR APPROXIMATION 

1.        Lov-Pass Filter 

For a linear array of detectors, the overall detector transfer 
function is the summation of the individual detector transfer functions.     In a 

uniform-size-detector array, the transfer function of the ith detector having a 
» 

weight A.  and centered at the point,    j i  - - 
would be 

W (where W is the detector width) 

F1 (m) = Ai 
sinnnW 

nra exp 2i-l 
W ! (2mn) (II-1) 

The transform of the array is therefore 

+a 

r'   i*)-^       Ai 
sinnmV 

nm exp 
i=-n+l 

21-1 
2 WJ i2m) 

'} 
(II-2) 

Because of the symmetry of the transform with respect to positive and negative 

frequency. Equation (II-2) can be written as 

F  (m) = 2 sinnmW 
2^  As cos [(2i-l)nniW 

i-1 
(II-5) 

An ideal low-pass filter has the followin 
band characteristics 

g pass-band and stop- 

Fpg (m) = l 0 < m <  m 

SB (m) = 0 a   >  m (II-5) 

where m is the catoff frequency of the filter. 
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The error, ^i, in the pass-band is 

A = F - F. PB 
0  < m m (II-6) 

and in the stop-band it is 

A = F - F SB 
m\      >        m (II-7) 

Ihe mean square error, E, over a region, -K < m < K, is then 

- ^   f 2K       j 

K 
A   dm 

-K 

Equation (II-8) takes the following form 

(11-8) 

.     * f 
m n 

E= ?ir 
-m 

sinnmW 
urn 

V    Ai cos  (2i-l)TimW 

i=l 

dm 

m 

ö 
sin.nmW 

nm y     A.   cos  (2i-l)  itrnW 

i=a 
dm (II-9) 

_o have the LMSE we require 

ö E = 0 

d A,. 
= u 

(TI-IC) 

a E 
0 A 

- 0 
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These  conditions produce a net  of simultaneous algebraic equations in A,, 

A2 ... A^ which can be solved for these parameters. 

Equation (71-9) can be expanded as follows 

E 

m 

■i r 1 + 

0  I 
_P    sinnrnW 

nm 

sinnmW 
nm 

2 r     n 

y    Ai cos  (2i-l) 

L   1=1 

1 

T 2 

nmW 

)       Ai  cos   (2i-l)mnW ) 

1 
dm 

1=1 

.2 

^ k sinjtmW 
rnn 

m 

1 2 

A.   cos  (2i-l)nmW 

L   1=1 

dm (H-ll) 

As the set of partial derivatives, (II-IO), is independent of the order of inte- 

gration in (11-11), the set of Equation (11-10) can then be written as 

g E     1 
TA7      K 

rn 
sinnmW 

Y    Aj cos (2i-l) nmW 
1=1 

cos (2i-l)ÄmW 

si. 
nm cos (2i-l)nmW > dm 

K 
1 

+ K 
1 1 
m 

jsinnmW I 
n 

nm ;  A^^ cos (2i-l)nmW 

i«l 

cos (2i-l)nmW dm  (11-12) 

After simplification,  this can be written 
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i 
K 

K 
sinnmW 

■m. 

n 

I 
L 1=1 

A. cos (21-l)ianW 
1 

cos (?i-l)jTmW dm 

2 
K 

m 
sinnmW 

nm cos (2i-l)jtraW d» = 0 (II-.M) 

The set of Equations (II-15) can not easily be solved analytically. A numerical 

solution is clearly indicated. 

If the limit of integration, K, is allowed to become very large, 

the numerical manipulation can become quite complex. For practical purposes, 

however, it is possible uo assign an upper bound to K, above which the response 

is not of any interest. This might be due, for example, to lack of information 

in that portion of the frequency spectrum. 

A program was written for the IBM 709^ computer for the cases 

of n = 2, k, 6, 8, and 10, and K = k m. . The results of -ehe numerical solution 

are discussed in Section V. 

2.   Band-Pass Filter 

Equation (II-2) applies also to the band-pass case.  The 

however, are chosen such that \ 

following equations instead of (ll-1!) and (II-5) 

coefficients. A,, however, are chosen such that the transform satisfies the 
1 

F  (m) = Fpg ( m) - 1 

F (m) = FSB f m) = 0 

mc "-I < mi < 

II    i    ^® 
171  <  I mc " ~2 

m  > m   Am 
c + - 

mc + ~ 

(11-1)4) 

where m is the center frequency of the band-pass filter and Am is the band- 

width. Applying LMSE criteria, Equation (II-9) can be rewritten 
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E - 
K   - K , 
max   mm 

I 
m 

ixa 
n 

sin^mW 
itm )  A, cos (2i-l)nfflW 

i=l 

dm 

1 - 
urn 

sinnmW 
nra 

W 

i=l 

A. cos (2i-l)nmW 
i        ' dm 

r max 

tea 
rac + - 

sinnmW 
itm 

n 

i=" 

A. cos (2i-l)nmW 
i 

dm (11-15) 

Equation (II-I5) can be expanded as follows 

E - 

K 
, max  , 

K        - K .    j m?x   min 

sinnmW 
rtm 

r n 

f 
m + 
c   2 

mm 

iim   / 

1 2 

A, cos (2i-l)jtmW 
1 

i=i 

dm 

(11-16) 

r n 

K   - K" 
max   min Am ^ m - —- 

c 2 

S 1-2 
sinnmW 

-m )  A. cos (2i-l)iTraW 

L i=l 

dm 

I 

For LMSE, the set of Equations, (ll-lu), must be satisfied. Differentiating 
+ ;ie integral, we can write 

a E s 1 
§ A, ' K   - K 

i _ ! sinnmW 
J j  nm i   max   mm  "L ' 
min 

m + — 
c   2 

2 A^^ cos (21-l)sm¥ 

.1=1 

cos (2i-l)jtmW dm 

K   - K 
max   min    J Am 

mc -~ 

sinnmW 
nm cos (2i-l)sfflW dm (II-1T) 

Equation (ll-lj) can not be solved analytically. A numerical solution can be 

obtained after assigning values for K   and K . . 
max     min 
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J.   Lov-Pass One-Dimensions 1 Spatial Filter Approximation 
Including Detector Gaps 

For the detector in the original one-alroenslonal analysis having 

we subst 

Figure 2) 

width, W, we substitute a new detector of width, W,< W, and a gap, Wg,  (See 

Wg --- g Wd and  g < 1 

therefore (ll-l8) 

W - ^- Wci   1+g 

W 
The first detector, as in the earlier analysis, is still centered at — , the 

c 

W 
second at J> - ,  etc. 

For an approximation over ^ loops and using 2n detectors 

r^— = nW = n (l+g) W, (II-19) 2 m v 0/ d \   > / 
c 

Equation (II-3) can now be written 

sinnmW %—1 
F    (m)  = 2    —  -       A.   cos   (2i-l)3TmW (11-20) 

nm —.       i 
1=1 

W   1       n 
sm 1 i ii s t—, 

-^       )       A.   cos   (2i-l)nmW 
nm 

i=l 

)      A.   cos  (2i-l)jtr 

for H    loops    W =    r—-^—   and c r 2 m    n 

2]  

F    (m)  = 2  —±  Ai  cos       (2i-l) m J^- | (II-21) 
n m^  (l+g;     __ jn 

1=1 
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Us.       Equation (II-13) for optimizstion on the basis of IMS1, we havs 

a E 1 rK 

K      . 

sin      Jtm 
n m(L+g) 

\   Y' 

j;m 

n A.   cos  (2i-l)nm ,. 
1 2 n m 

i-1 

i (11-22) 

CO£ (21-1) nm JL 
2 n m 

dm 
c - 

„ ra      sin ms  y-,—T 
f   c n ia    (1+gJ ! 

c — cos    (21-1 )sa —*■  Um = 0 
2 n ra I c J K    i nm 

The set of Equations  (11-22) determines the coefficients. A..    A nvimerical 

solution to these equations has been made on the JOSh computer.    Ihe results are 

discussed in Section V. 

B SLOPE CRITERIA FOR DETECTOR DENSITY 

In addition to the conventional and LMSE methods  for obtaining detector 

weights, another parameter, detector density, can be incorporated in the 

optimization procedure.    One such technique would be to have the detector density 

proportional to the slope of the ideal space function, that is, the detectors 

would be concentrated where the function changes most rapidly. 

f(x)  = 
sin 2 n m    x 
       c 

nx (11-23) 

and the slope 

d x 

,     2 n m    x cos 2 n m    x  - sin 2 - m    x 
1 c c c 

(11-24) 

The detector density as a function of x is given by 

N'U) 
j     d x (11-25) 
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vhere ji is a  density constant determined by the total number of available detectors 

and the truncation point.     In the limit as  the truncation point and the number of 

detectors becomes large. 

lim 

xT —f OD 
r ^ 
o 

r(x) d x - iv, , -      n i —^ 
Total d x 

■ o 

d x (11-26) 

Therefore 

sin 2 jT m    x 
N^tal " ^    1 " n x 

1        sin 2 jt in    x 
c +      

Ji   x 

sin 2 n m   x 

n x 

X- 

cin 2 n m _ x 
where x, ,  x, .  xr.,  etc., are  the abscissas of the     m" ^irna, and 

15      5 " x 

sin 2 n m    x c 
x,., x, , x,-.  etc., are the abscissas of the    maxima. 
2'     h'    b' ' n  x 

Therefore 

K 
Total 

1 + f - f  . 
max        mm 

For a given number of detectors, N        ,, 

(11-27) 

(11-28) 

N 
Total 

|i  = 
1 + 21 |f - f . 

max        mm 
(11-29) 

The  increasing series, ,    f   - f ,  I , does not converge because 0       ^  1 max   mm I 0 

for large x it becomes 0  n 

4 m 

n  2 n+1 

which clearly diverges. Therefore, In a practical application, some finite range 

for x must be chosen and )   f   - f    must be evaluated in that region. *- 1 max   mint 
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lit.     TWO-DIMEKSIOML SPATTAJL FILTER SYNTOESIS 

A. COm'ENTIOML APPROXIMATION TECHNIQUE 

Assume that  the weights  for a  two-dimensional mosaic of detectors 

are to be chosen such that the array has a low-pass characteristic from -m      to 

*n      in the m1    direction, and from -m      to +m      in the m0 direction, as shown 
A 2 2 

in Figure 3 i.e. . 

F    0^,    m2)  = Fpg    (mr    m2) = 1 
0 < |m1j   < 

0 <  im. 
(III-1) 

m 
V 

F   {mV    ra
2) =FSB    Uv    m  )  . 

m 11 

1   Im^ 
Is   2 

m 
i     c. 

m 
(III-2) 

The synthesis procedure here  is analogous to that of the one-dimensional filter. 

The inverse transform of this ideal filter characteristic can be written as 

sin 2 n in      x    sin 2 n m      v 

fi*>y) =  ^     ^ ^_ 
n2 x y (III-5) 

f(xry}   =    U m      m 
"1    "2 

sin 2 n m     x    sin 2 s a     y 

c^     c-      2 n m 2  n  m       y 
C2 

(in-iO 

The two-dimensional space function f(xiy) is shown in Figure 5- 

For a mosaic of detectors,  the approximation can be carried on for 

2 loops,  5  loops,  etc.,  independently in either the x or y directions.    A weight 

value  for each  detector can be obtained by either the conventional method of 

assigning to the detector the -alue of f(x,y) at the detector's center or by 
applying the IM5E technique. 
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The value of f(x}y) at the center of a detector located in the ith row 

and the kth column is 

A,, = f(x,y)    . I* 
liyk 

sin 2 n m  x   sin 2 t m  y 
C,   1 C._  K 

ik     - 'x.y. d   n Xj 2 n yL 
(III-5) 

sin 2 n (21-1)-^^   sin 2 n me (2k-l) -| 

Wl 
2 n (2i-l) -| 2 TT (2k-l) -| 

The transform of a rectangular matrix truncated after n elements in the x direction 

and p elements in the y direction would therefore be 

# ,  sin n m, W  sin rt m W^ 
P  (m^, m^) = —  - 

m1W1 «m2W2 

n 

i=l  k=l 

8in(2i-l)jt W, m 

W^)—- 
sin(2k-l)n W, 

(III-6) 

TäTTT 

m 
C2 cos(2i-l)W1 n n^ cos(2k-l)W^ « m 

Equation (1x1-6) can also be written as 

. .. . ,,        n        p 
- .       sin n m,  w,    sxn R HI.-, W_ ,—, 

F   (E1i' ffl2)    ~ —rzir rsr-w: 
11 2 2 i=i k=i ^ 

E Z !in(2i-l)n W,   (m      + mn ) 
x      c, i' 

(III-T. 

4- sin(2i-l)n W    (m    - a. ) 1  -c. sin(2k-l)n Wo  (m^    + mj + sin(2k-l)n W    (ffl      - m0J ,1 c 
2 

As  in the case of the one-dimensional  filter,  F      (m ,    a  )  can be 

separated into two factors 

0 (mli m2) 
sin  ^ nL   W      sin n m    W... 

it m,  W, 
1    1 Sni2W

2 

(III-8) 
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f (m1, m2)  =    y 
n^       P      sin 

i-l    k=l 

(21-1) K,   n m 
1        C1J 

^os (21-1) W1 TT m1 

21-1 

sin (2k-1)  W0   n   m cos   (2k-1)  W0   rr  m 

2k-1 

(m-Q) 

Hie function 0 (HL, , m  ) and ^(m,, ra0) are called the envelope function and edge 
function,  respectively. 

Scanning the two-dimensional filter in the x space direction corresponds 

to filtering with the one-dimensional response function on the ra,  axis;  i.e., 

m0 = 0.    The envelope function p (BL, m ) for scanning in the x direction therefo: 

takes  the form of 
sin n HL   W 

; ^ £j-     >  the same as  in the one-dimensional case. 

)re 

The zeros of this function occur when 

a. 
m1 W1 = a1 or at a,  = .-2. 

h       Vl (III-10) 

where a, is an integer. 

Scanning the detector array in the y space direction corresponds to filterin 

wxth the one-dimensional response function on the m0 axis, i.e., m . 0. Fo 

this case, the envelope function reduces to 1 

whose zeros occur at 

where a2 is an integer. 

sin jl   ; S w2 

K m2 2 

ra2 
Z 

_ 
a2 

(III-ll) 
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Scanning at some arbitrary anglej 9, with respect to the x axis in 

tne space domain corresponds to filtering with the one-dimensional response function 

on the radial line making an angle 9 with the m, axis.  For this line 

m, = p cos 9 
x 

m ^ p sin 9 
(111-12) 

■where p is the ^adial distance from the origin in the frequency plane. Applying 

(III-11) in Equation (ill-?) we find 

0 (p,ö) = 
sin (« ¥1 p cos 9)   sin (jt W0 p sin 9) 

it W,   p cos  9 IT W    p sin 9 (III-13) 

Zeros of the envelope function along the  radial axis  defined by 9 are therefore 

a. 

M.   cos  9 

a. 

W   sin 9 

= ß 

= 7 

(III-I4) 

-1 Wl 
For low values of 9, i.e., 9< tan   — ,  the zeros of sin (n W, p cos 9) occur 

more frequently than the zeros of sin (« W p sin 9). Figiare ^a shows these two 

terms separately. 

As the value of 9 increases.-, the zeros of 0 move closer to the origin 

and the zeros of 0, move away from the origin. For values of 9 approaching 

-1 Wl 
tan" — the negative loops of 0, 0^ become increasingly smaller in amplitude 

2 
and extent.  In the limit when W. p cos 9 = W,. p sin 9 the negative loops in 

0 0 disappear comp 

Figure Ub results, where 

0=0 0 disappear completely. A more quickly attenuating curve as shown in 

0 - 
s5n (n W p cos 9)' 

n W, p cos 9 (111-15) 
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I 

Returning to the edge function, f (m^ mj, on the a^ axis, m2 = 0, 

and the function is a summation of cosine terras whose zeros are (21-1) W m 

(33-1) where a is an integer, f (m^ m2 - 0) has a maxima at ^ - ^ for Z 

even values of a, and minima at ~-   for odd values of a. The function, P (nu, 

»o = 0), has therefore, maxima and minima on either side of ea^h — which is a 
Wl 

zero of f (m., m ), A similar result exists for t.ie m0 axis and ~ . 
■*-  *= 2 

For axes at an arbitrary 6, however, the edge function is a summation 

of mixed terms such as 

cos |(2i-l) W « p cos 0 j cos f(2k-l) W0 n p sin öl 

For small values of 9 where 

(2i-l) W cos 0 > > (2k-l) W^ zln 9 
"*■ /J1 

the zeros of 

cos |(2i-i) W1 ■ p cos Gj 

appear more often than the zeros of 

cos [(2k-l) Wr n  p sin 9 

As 0 increases, the zeros of 

cos [(2i-l) W1 " p cos 9 

nicve to the left and those of 

cos [{2k-1) Wg ,-T p sin 9j 

move to the right. When 

(21-1) W1 cos 9 = (2k-l) W sin 6 

the product degenerates to a cosine squared function. 
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B. LMSE APPROXIMATION IN FREQUENCY DCMAIN 

In  ehe LMSE criteria, the weighting function of a detector located in 

the i      and yh column would be a value A. i which has to be found by the approxi- 

mating procedure.     In this case, formula  (III-6) takes the form 

n F 
,     Sin n m1  W1    Sin n mp Wp    ^,     --, 

F    (m^ ,    m  ) = ~   - 
X £_ t- m. 

A,,   Cos ik 
(2i-l)      ra1 W1 

i =1    k=l 

(Ill-lb) 

x Cos j (2k-l) « m2 W2 

An ideal low-pass filter in the two-dimensional case has the characteristics 

FFB    (V    m2)  =1 

0 <      m,      < m 1 I    c- 

0 <       m. m 

(111-17) 

and 

FSB    (m^    m2)  - 0 

m, 

m,- 

m 

ra 

(111-18) 

where m  and m  are the cutoff frequencies of the filter in n^ and m2 directions, 
cl    c2 

respectively. 

Bie error in the pass-band and stop-band is similar to that described by Equations 

(11-6) and (II-T).    ühe total error, therefore,  in this case would be 

A .K2 

E - 
kKi K2 

A   d nu,  d m m,   a m 

^o   Jc 

Kg—♦ ao (111-19) 
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E = 
^K1K2 

k    Sin n m1 W1 Sin n m2 W2  "  ^, 

ÜL sa. 
1-1 k=i 

A   Cos (21-1) n  m. W.  Cos 
X  X j 

(2k-l) « m2 W2 dm-, dn)„ + 

i jj^   Sin n  m1 H^ Sin n  m2 W2 
2 m.        El £  ^ Aik Cos 

n   p 

1=1 k=l 

Cos (2k-l) IT m2 W2 dm. dm 

To have the WISE  criteria satisfied, we require 

'h rK' 
1-2^ k K^ 

*" -m  ^m c1  c 

(21-1) n m1  W1 

(III-20) 

I 

a E 

a E = 0 (111-21) 

d  E 
d A = 0 

np 

These conditions produce a set of np simultaneous algebraic equations in A , 

A^p, ... A which can be solved for these parameters. The solution of these 

equations, however, can not be easily obtained analytically. E.-pending these 

equations similar to the expansion of formula (ll-ll) through (11-13) for the 

one dimensional case would be adaptable to a computer xnput. A numerical solution 

for cases of 8 x 8, 10 x 10 and 20 x 20 square matrix is obtained. The results 

of these solutions are discussed in Section V. 
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LOW BAIfD-PASS WO-DIMENSIOKAL SPATIAL FILTER APPROXIMATION 
INCLUDING DETECTOR GAPS 

For the two-dimensional case including d-tector gap. Equation (HI-6) 

becomet 

Sin « m W   Sin n  m W   n 

F* (m , m ) -   ■ i  -— i 
l c. ir la, W,       m„ W, 1 d. i—i  i i 

1=1 k---l 

Aik Cos a-y« mlWl1 

Cos 
3k-Ij ,    u 

2"2 " m2 W2 

where 

and 

w1 » (ug,) w 

W2 = (l+g2) Wd 

W  and W  are the width of the detectors in the x and y directions, 
1     2 

respectively. Detector gaps in the x direction and y direction are g, W, , and 1   v 
g2    W , respectively. An optimum approximation to the filter function can be 

2 
obtained by the same procedure of IM3E discussed in the previous sect'-m. The 

parameters, g-^ and g , must be chosen for the approximation. In a more elaborate 

procedure, one may optimize not only on the basis of LMSE for the weighting 

function, but also for g. and g0. 

Page III-8 



T Report No, 2985 

IV.       SPATIAL FREQUENCY FILTER DESIGN BY MINIMIZING  INTEGRAL SQUARE 
EJRRÖfi IN m DlfrECtÖft PUTg — 

- — i  i i     i      .-% 

A.   INTRODUCTION 

In the spatial filter design methods described in the preceding sections, 

detector weighting coefficients were chosen so as to minimize the integral, over a 

prescribed finite region, of the square of the difference between the desired and 

approximate frequency domain functions. In the method presented here, detector 

weighting coefficients are chosen so as to minimize the integral, over the detector 

length (area in the two-dimensional case), of the square of the difference between 

the desired and approximate space domain functions. But, by Parseval's theorem for 

Fourier transforms, the latter method simultaneously minimizes the integral, over 

the infinite region, of the square of the difference between the desired and approxi- 

mate frequency domain functions. 

As mentioned in Section II, the minimization of error in the spatial 

frequency domain was over a limited finite region because extending the region would 

have led to computional difficulties on the IBM 709^. The method presented here 

overcomes this difficulty in that it minimizes error over the infinite spatial 

frequency region- 

Perhaps the main advantage of the method of detector plane fitting, as 

shown in detail below, is that detector weighting coefficients, for all of the cases 

treated in the preceding sections, can be found by using tabulated functions, thereby 

eliminating the digital computations. 

Furthermore, as shewn in Sections IV,D and IV,F, detector plane fitting 

offers a simple way of finding, with the aid of a digital computer, optimum non- 

uniform detector widths as well as weighting coefficients. 

To see how Parseval's theorem applies here, let 

F(m) = Fa(m) -f Fe(m) (jv.i) 

where F(m) represents the desired spatial frequency characteristics, F (m) the 

approximation, and F (m) the error. Also, let f(x), f (x) and f (x) be the 
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corresponding inverse Fourier transforms. Then let the integral of F '"{m) over 

0 S m "^ Co defines the approximation error c : 

r* - 
g »   F d{m)  dm (lV-2) 

i      9 

Now since f(x) is real tnä thus has a real Fourier transform, Parseval's theorem 

can be written as 

|  fe
2 (x) d x = j Fe

2 (ra) dm = c (1V-3) 

0 h 

2 
This equation shows that if a design procedure minimizes j f ' (x) d x by fitting 

t 
in the detector plane, i„ also simultaneously minimizes the spatial frec/iency 

approximation error. 

In the above equations m represents the spatial frequency variable in 

cycles per unit length. But in the remainder of this section u> = 2fiJn in radians 

per unit length is used for the spatial frequency variable. Although this change 

simplifies notation here by eliminating factors of 2n in  many places, It requires 

that one be careful in relating the equations of this section to those appearing 

elsewhere in the report. Parseval's theorem can be written in this way because 

f (x) is an even function and thus has a real Fourier transform. From Equation 

(lV-2) we see that if the design process matches f (x) to f (x) by minimizing 

j        .fix)  - f \x) 2 dx (IV-U) 
•'0 

a 

then the spatial frequency error over 025 m — " is simultaneously minimized. 

Of major significance here, fitting f (x) to f (x) does not require 
a 

solving a set of simultaneous equations to obtain detector weighting coefficients 

In contrast, the present computer optimization solves a set of n simultaneous 
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equations for an array of a detectors; and,  tor example,  In the case of n s iw Cow\ 

in a two-diffiensional acray, solving the equations is not an easy task even for 

the IBM 709^. 

0       - 'J)r 

and F 0(*) minimizes 

€2 = 

«c 
I 1 - Fa

2(U) 
Jo 

2 '* P 
du» +  *     F 0 (tt>) dm. (IV-6) 

Let e^ represent the errcr with P Jm) over O^mZn-ü 
5 a^ 

M^ 2       nv n 

The 

free 

appi 

B.   QUALITY' OF APPROXIMATION 

Because the computer optimization minimizes error over only u^ a» na>c 

whereas the detector piene fitting described here minimises erroi over 0S»S», 

one would expect a smaller error over O^turntuc to result from the computer opti- 

mization. But the detector plane fictlng described in Sections IV,D and IV,F leads 

to detectors of variable wiQtv , whereas the computer optimizations performed thus 

far have used detectors of equal widths. It will not be too surprising, then, to 

find that, as a result of the latter factor, a filter designed by detector plane The 

fitting may have less error than by frequency domain fitting. Furthermore, with appl 

equal width detectors, the fact that the error criteria of the two methods become the 

mor€ alike as n au increases shows that, for sufficiently large n u)c, the resulting else 

approximations will differ negligibly. 

Although they will not be used elsewhere in this report, we now formulate lie 

expressions of approximation errors for future use in comparing computer ort ization x^C 

,1th detector plane fitting. Thus, let F . (tt>) represent the approximation to F (a*) the 

that results from frequency domain fitting over 0Sgs»j let F-Ctu) represent the and 

approximation to F(UJ) that results ^-om detector plane fitting. For an ideal low- 

pass filter, let P(ou) = 1 over O^tbTu^, and W{m) »  0 elsewhere. 

Then F A(iu) minimizes ax 

-u» r 2 ,nu>c   ? 
e1 = l " j 1 . F&1{*)      dm  + j     ' Fal im)  du),      (IV-5) is m 

the 

■Then 

0 % vÄier 
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Combining integrands, gives 

e5"el = f   ^{Fa22  ' Fal2) d,JU + 2 ^Kl'  Fa23 dm (lV-85 
'0 0 

The ratio -«  thus offers a measure for comparing detecuor plane fitting with 
el 

frequency plane fitting on the basis of integral square error in frequency plane 

approximation. 

G.   OPTIMTZATION OF WEIGHTING COEFFICIENTS IN A ONE-JlMENSIONAL ARRAY 
OF CONTIGUOUS CETECTORS 

The ideal low-pass spatial frequency function again serves as an example 

The method suggested in Section IV,A and used in this and the following sections, 

applies to arbitrary filter functions; the details should be easier to follow for 

the low-pass case because of its simplicity and pr-! or treatment by other methods 

elsewhere in this report. 

Thus, consider figure 6, in which four detectors, each of length ^ , 

lie in the interval 0s:xS2n (by summetry, we need consider only the half-plane 

x^O). As suggested in Section IV,A, for each detector the im-e^ral, taken over 

the length of the detector, of the square of the difference between its amplitude 
, 1 sin x ...... , anä 7 —S— is minimized with respect to detector amplitude. 

For example, in the second interval 

j    /l Sin X      y.d    . *_, „ . 

Jn/2 

is minimized by letting a equal the value found in solving  2 = 0. Carrying out 

the minimization, 2 

^"i/2^ [J—-- — *^     ^      (IV-10) 
2 

Then, solving ^— = 0 gives 

de„.  r*     ^        /,   _...-2.  2a 

a2 - % Lf^ dx = ^  Si(n)"Si(^ Clv']L1) 

where Si(x) represents the s.ne integral of x. 
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For the other detectors, 

n 
|Sl (I) 

^? Si (|i) - Si («) (l\'-12) 

a^7 Si   (2.)   - Si   (^ 

D.   OPTIMIZATION OF WEIGHTING COEFFICIENTS AND DETECTOR WIDTrS FOR A 
ONE-DBffiNSIONAL ARRAY OF UNEQUALLY SPACED DETECTORS 

Consider the expanded sketch in Figure ? of the interval ^ < x S - 

where the diagonally striped areas represent the integration areas of the error 

integral. Assume for the moment that a has been determined as above. Now consider 

what happens to the error integral when the second detector, which originally ex- 

tended from * to n, is replaced by one that extends from w to b-j thereby forming 

a gap from b to a. 

As a result of this shortening, the entire striped aiea no longer 

represents the integration area of the error integral^ to the right of x = b ; the 

dotted area replaces the striped area. Since the added dotted area exceeds the 

deleted striped area, the total error decreases. 

This discussion shcvs roughly how shortening a detector can reduce 

total error; Equations (iV-lj) and (IV-18) shovs the interdependence between b„ 

and a_. That is, the procedure in the previous section for optimizing a no longer 

applies if b is to be optimized also. 

Further consideration of this shortening process, as applied to the 

example of four detectors, brings out seme additional points. First of all, 

shortening the drtector that belongs to the interval O^xfr— will not reduce the 

error. This follows fron noticing that the absolute value of the difference 

between —-— and a, is less than   '  itself throughout the interval. Secondly, 

in t.ie interval n ^ x S ~ the left end of the detector gets cut off, rather than 

the right end. 
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The procedure given here applies to any f(x); the lov-pass filter 

provided only a convenient example. Design for an arbitrary f(x) can start by 

marking approximating rectangles on a sketch of the exact function prior to 

making the optimizing calculations. This helps to organize the work and to avoid 

unnecessary calculations in regions where optima do not exist. 

The calculation of the optimum values of aQ and b in the above example 

proceeds by first writing the error as 

n/2\ 

in x 
dx + '  — 

J TT2 

1  sm x 
dx   (K-15) 

Then netting r~ = 0 and T~ = 0 gives 

from -v^iich 

from which 

b b 
j 2 2 sin x _        D2 
/  T <ix + 2a„ 
i/2 "  X        2 j . 

"it/2 

dx = 0 (iv-no 

and 

a^ = —■ 
1 

^2 sin x „ 

IM * dx 
n b

a-l 
si(bj - st(|] 

2    2 
(iv-15) 

dc. _ sin b2 \2 

2  \    2     ^ 

I 1 sm D2 

= 0, (IV-I6 

1 sin b2  a2 

(IV-1T) 
t 
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Substituting (IV-1T) into (IY-I5) lives 

Si (tj - Si (§) = 12 c= iii hJ _ (IV-18) 

This equation is readily solved with an IBM '[(Jjk  program. For roush 

calculations a trial and error procedure Is also feasible; substituting the value 

Of a^ that was found for continguous detectors in the previous section into 

"in b.^  a 1 
n      b 
vaiueT 

— • |- and then finding b    in tables of —-— furnishes an  initial trial 

E. OPTIMIZATION OF LIGHTING COEFFICIENTS Hi A SQUARE TWD-DIMENSIONAh 
DETECTOR ARRAY 

The two-dimensional ideal low-pass  filter will be used as an example 

of the ootimization method.     Let Ffa; f t»  ) a      1 for   1*   :   -'1.    m     —  l 
x' y* i x    '  v 

!0 elsewhere. 

Taking the Fourier inverse transform gives 

(r/-i9) 

for the exact detector function. Assuming that the detector locations and areas 

have been prescribed, the error for each detector can he written as 

mn  1 
r i i 1  sin x sir % 2 

y nn dx dy (IV-20) 

mn 

where Ä  represents the area of the mnth detector. 

Minimising e  by eettina T- ™ - n -r-i^^ ■ 
mn 

OC 
mn 

mn 

;in 
J J 
A 
mn 

sin y ^ „ 
  dx dy + 2 a  A 
y mn mn (IV-21) 

Pan 
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Hence 

mn 
H

&
 A 

mn 

tlx dy (IV-22) 

Finally,  by  separating the double  Integral, 

mi ,  - -T—    .Si   (x   )   - Si   (x       )    Si(y   )   - Si   (y       )       (iV-o) 

ran    i 

wiiere x   ,  x       ,  y  ,  and y    ,  denote the boundaries  of the mnth detector, ra  ffi-1' " n n-i 

F.   OPTIMIZATION OF ANNULAR WIDl'HS AND WEIGHTING COEFFICIENTS IN A TWO- 
DIMENSIONAL QWMJ&m  SYMMETRIC SPATIAL FREQUENCY FILTER 

The analysis in this section uses the zeroth order Fourier-Bessel 

transform (known also as a aeroth order Hankel transform). For detector weight- 

ing functions that are independent of polar angle, the pertinent transforms become 

f(r) = / m{m)  J (r;) urn (IV-24) 

and 

FU) =  '    r f (r) J (ns) dr 
' 0 

(IV-25) 

Here we apply the method of detector plane fitting to the problem of 

approximating a circularly syranetric ideal low-pass spatial filter by a set of 

annular detectors. 

Hence, 

ana 

F(u;) = 1 for üi.ro) 

F('JU) = 0 lor »> (u 

P-ipe r/-8 
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Taking the inverse transform. 

-m 1 U>   U) 
c  c 

f(r) =    * J (rw) am  « - m  J, (ruj) |  = -^ jJrc« )   (lV-26) 

Since- f(r) appears here almost in the form of the funetion that describes 

Fraunhoffer diffraction at a circular aperture,    we may take advantage Of this 

similarity by forming 

f(r)     Jl(ru,c) 

u; 
ru). 

tM and modifying a circular aperture diffraction pattern to plot     >^/ vs TUJ    as in 

Figure 8. ^c 

1. Weighting Coefficient Optimizati on 

We first consider the optimization of weighting coefficients only, 

and assume that the detector radii have already been chosen. Figure S shovs the 

detector configuration and the desired spatial function. 

Let c represent the error over the area of the innermost detector, 

and a, the weighting coefficient. Then 

*l=2rt 
rri 

J N - aij' r dr (IV-27) 

To simplify notation, let z = vn^,  s = r,« , and o^ = —,  so that by substituting 

(r/-26) into (r/-2T) !i)c 

0   2f
1l^) a. dz 

de 
Setting -r—*■ s w da. 0 gives 

(IV-28) 

i 

de 

5S7 

rrj 

i = 2K B 2 / -2 f 1 J (2) dz + 2a. / i 

1    c  1  Jo  1       i Jo 
z dz N = 0 L 

j 

(iv-29) 

M. Born and E. Wolf, Principles of Optics, Pergamon Press Ltd., 1959, 
pp. 59^-596. '""" Page IV-9 
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Hence, z 

I   ^     -Jn(El).Jnco); 

Similarly, for a detector extending from r to r -,, 
n    n-1 

J (z J - J (z ) 
= J^Jt^ oLn_ (    5 

2  - ^ -, /2 n    n-l ' 
a 

%*i,ere a = -£- and z = r * 
n    2    n   n c 

fJ3c 

2.   Slmultaneoas Optimization of Weighting Coefficient and Radius 

The procedure here follows that shown in Section IV,D for one- 

dimenslonal detectors. Using the preceding example of four annular detectors, ve 

shall show how to find the optimum radius along with the optimum weighting coefficieni 

From Figure 8, we expect that reducing the outside radius of the 

second detector should reduce its error in approximating 1^ c over the interval 
r*^ 

c 

ri^rSrp' Letting r  denote the reduced radius, and using the notation on 

Equation (IV-2P), gives 

2 

fc2 

r
Z-2   /j  (z) |2 r

Z2   |J (z); 

- -n % jz    pr- - %] * ^ + 2* #/ jz_2 hViz dz ^-^ 
ös2 de2 

As  in Section IV,D,  the solution follows  from setting r-— = 0 and «. = 0 
da dz.2 

Thus, 

C}€0 0 rZ   ^ r-Z_2 2       ..       2 
1 

'-■, ztq = dn % -2 / 'c  J^z) dz + da„  /      z dz )  = 0 (lV-53) 
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whence 

and 

vhenc« 

a2 = 2 
J (zj - J (z J 

Q       Ö 

?.n & 

2n m 

-2 

u a2l Z
.P z. „  ! -2 / _2 

J 

il^iz^)  - a2 z_2 

0 

a = 
2 

2 ^(z.g) 

(IV^) 

(IV-35) 

- ^ (z^)) =o      (IV-56) 

(IV-3T 

Equating  {W-lk and  (IV-3T) givet 

Jl^-2)      ^Sl>-^-2) 
■-2 

2 2 
Z-2    " zl 

(IV-58) 

This transcendental equation in z      should he easy to solve with the IBM 7-094. 
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NUMKRICAL SOLUTION 

A.   INTRODUCTION 

To evaluate the effect of finite size  detectors and the effect of 

detector number, or truncation., in the design of the previously descrihed low- 

pass, band-pass, one-dimensional and two-äimenslonal filter, numerical solutions 

were taken from an IBM 709^ and a hybrid computer (HYDAC 2h0ö).    To normalizations 

were performed to obtain a generalized result. First, the detector width was 

normalized by m , the cutoff frequency, so that 

whe^e a is an integer. This normalization guarantees an integral number of detectors 

in every loop of the envelope function . 

Second, the truncation point in the space danain was normalised by the 

cutoff frequency m i.e., 

2XfBQ m V (V-2) 

where x^  is the abclssa of the truncation point in space domain and fj Is an integer 

which corresponds to the number of loops to be approximated in the envelope function. 

The WEE  criteria was first applied to an array without detector gaps 

in order to compare these results with those of the conventional approach as 

described in Appendix A. After demonstrating the value of IMSE, this method alone 

was used for approximation of linear arrays including detector gaps. The reason 

«as that the conventional approach could not compensate for the contribution of the 

gap between the detectors. 

For practical reasons, USE criteria may not be over an infinite 

frequency range. The limit frequency band chosen for the evaluation of the error 

depends on the constraints of the signal-and-noise spectrum in the stop-band. In 

following numerical solutions, the approximation has been optimized up to four 

octaves above the cutoff frequency. Approximation for a different frequency band 

can be performed in the same manner. 

1 
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1.   ONE-DIMENSIONAL FILTER 

Figure 9 is a numerical solution for a low-pass filter truncated 

after tvn loops of the envelope function, 71 = cj and employing four detectors. 

The approximation vas performed by both the conventional method and the I^KE 

method with zero detector gap. As shown in the figure, there is a negligible 

effect on both the pass-band and stop-band response. Furthermore, the weighting 

function obtained by these two independent methods were identical out to three 

decimal places. 

C   TW-DIMENSIONAL FILTER 

Numerical solutions for a two-dimensional square response spatial 

filter using square arrays of 8 x 6, 10 x 10, and 20 x 20 detectors were also 

obtained,  fo generalize the solution, the frequency spectrum was normalized by 
m 

and m  as in the case of one-dimensional synthesis. The frequency of an   .ju^ii^j-vjiictj. o^IIUIIC£JXö . iiie irequency of an 
'"l     L'2 
8x8 detector matrix along the x axis and y axis is identical with the one-dimensional 

low-pass filter (Figure 10). As 0, the scanning angle with respect to the X axis, 

increases, the amplitude of the harmonic maxima and minima in the stop-band decrease 

as illustrated in Figure 11. The same phenomena were observed for the cases of 

10 x 10 and 20 x 20 detectors. This confirms the theoretical discussion of Section 

III,B. The band pass ripple increases for an angle 0 between 0 and 90°, reaches 
o 

a maximum at 0 = 45 • The reason for this Increased ripple in the band-pass may 

be that the optimization criteria which was applied for 0 = 0 and 0 = 90 only, 

thus allowing larger ripple for öO<0,,C90O. 

The two-dimensional approximation was performed by: 

1. Conventional method of assigning the value of the inverse 
transform of the cube at the center of each detector to that 
detector; and, 

2. IKSE to minimize error out to k m  . 
c 

The weighting functions for each case were similar. Differences between 

the weighting functions obtained by the two methods, occurred in the 3rd and higher 

decimals. The weighting functions were, of course, symmetrical with respect to 

both the x axis and y axis. Table 1 gives the value of these functions. 
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A point of interest is that the values A  . for high i and J, teconie 

extremely small. The value of A   for 8 x 6 detectors le about 0,03  while A-,, 

3 are all less tnan O.Qx is 0,01. The values of A, . for i >5 and J 

indicates "hat the effect of defectors located beyond the 3rd row and 5rd column 

beeomes negligible. Therefore, one can use a reduced matrix of detectors in the 

form of a cross with each arm of the cross containing four rows of detectors. 

Figure 12 shows a two-dimensional spatial filter response which is 
sin 2ic m x sin 2n m  y 

obtained by approximating two loops of the 
1 

s m it m. 
function 

"1 "2 

with a 20 x 20 detector array. A compariscn between this curve and the curve 

obtained by a matrix of 8 x 6 detectors indicates no difference in the band-pass 

response. The curve indicates, however, a better approximation in the stop-band in 

the region m <: m <r i+m than in the case of 8 x 8 detectors. This may be due to 
c       c 

the motion of the harmonic maxima and mLnima being farther from the cutoff frequency. 

Attention is directed to the large ripple in the stop-band Just behond 

k  m . had the approximation been carried on for a wider band than ^m , this ripple 
C G 

would obviously have beer attenuated at a cost of an increase in the ripple in 

cither band-pass or stop-band before k  m . 

This iscussion can be extrapolated to the cases of circular symmetry, 

low-pass and band-pass filters. A series of circular ring detectors centered at 

the origin and weighted by  may be useu. Since the first-order Bessel's 

functiun is Itself damped with increasing r, -    decreases more rapidl: than 

Thus, the effect of detectors located far from the origin is less important, 

which allows earlier truncation in the approximation procedure. The numerical 

solution for this case would be similar to that of the one-dimensional case and, 

therefore, was not performed at this time. 

D.   NUMERICAL SOLUTION INCT JDING DETECTOR GAP 

Figures IJ and 2.4 show the approximation of the low-pass filter by 

using an array of r tectors with varying detector gaps. As described in the 
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theoretical discussion, the detectors are centered at the same point as In the 

ca?.; Of no p.p. The vidth Ci the detector is decreased „o allow a variable gap. 

The phase function of these detector'?, therefore, is unchanged. The frequency 

spectrum contributed by each detector, however, is smaller in amplitude and more 

slowly damped than the wider detectors. It is, therefore, necessary to modify 

the weighting function to approximate the same overall spatial filter rebponse. 

Due to this general, lower amplitude, the weighting function of each detector 

must be increased to approximate a band-pass characteristic. Increasing the 

weighting function also Increases the ripple in the stop-bond compared to that 

obtained with the wide detectors. These results were confirmed numerically. Figure 

13 shows the effect of detector gap or the band-stop ripple. From this figure, 

it is seen, that for an eight-defector approximation, the band-pass characteristic 

is similar to that with no detector gap. Ripple, however, is developed in the stop- 

hand region of ^--5 m , 8 m and 10 m . If less ripple is required in the stop-band, 0 c7   c       c 
the weighting function of the detector .-.ast  be reduced accordingly. Tnn , of course, 

results in larger ripple in the pass-band. Tne slope of the curve around the cutoff 

frequency is mvoh  slower because of the narrow detectors. Figure Ik  shows a numerical 

solution of a three-loop approximation for various detector gaps. The ficure illu- 

strates closely that as the detector gap is increased, although the ripple in the 

stop-band stays fairly constant, the approximation in the pass band becomes worse. 

A comparison between figures indicates a sharper slope in the cutoff 

frequency of a three-loop approximation, eirailar to the case of no detector gap. 

Th"  case with detector gaps is less accurate than in case of no gaps. A better 

approximation in either band-pass or stop-band can be accomplished by weighting the 

corresponding error in the LMSE cemputation more heavily. 
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VI.  FREQUMCY MALYZER 

A.   INTRODUCTION 

fettem identification is one example of a promising application of the 

spatial filter phenomena.  Ir this case, a criteria for categorizing patterns on 

the jasls of their spatial characteristics must be chosen. One of the simplest 

is two-dimensional power spectra. 

There are a number of methods that might be used to determine two- 

dimensional power spectra. Such spectra are obtained conventionally by scanning 

a slit across a scene and analyzing the resulting time-function with a variable 

narrow-band filter, i.e., a wave analyzer; or, the autocorrelation function is 

computed, 

An alternate procedure, analogous to the wave analyzer, would require 

scanning a s- ccession of narrow-band spatial filters across the scene and determine 

the power in each bandwidth. Since for this discussion spatial filters are weighted 

detector arrays, a simpler modification would use a single array and variable 

weights. Further economic argument modifies the system to that illustrated in 

Figure 15. In this case, the need for scanning the array with each change of 

weighting function, is eliminated. Instead, the equivalent of scanning the array 

is accomplished by causing the weighting function to travel across the array. 

This weighting function scan can be achieved practically by using a tapped delay 

line. A large number of equivalent scans, therefore, cen be made in a short time. 

However, as will be shown, the methods of scanning the array and 

scanning the weights are not exactly equivalent, because both the array and the 

weighting function are truncated or frumed. Framing introduces a distortion into 

ths  me-sured spectra. 

B.   DESCRIPTION OF SCANNED WEIGHT FREQUENCY ANALYZER 

Given a one-dimensional weighting function, f (x), for a narrow-band 

spatial filter, having a center frequency, m , and bandwidth, am 

?(x) = — sin (nAmx) cos (2n m x) (VI-l) 
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We initially neglect the effect of a finite density of detectors; that is, we 

assume that f(x) is approximated perfectly over some  region - I <x<41. 

Whenever j x|> i^ the truncated f(x} = 0 

ffhe effective filter, F (m). Is the transforni of the truncated f(x), i.e., 

F (m) = ?  1  2 

-I 1 
fix sin (fi^x) cos (2ftm^x) 

imx 
dx (VI-2) 

where 

F1{ m) * F ( m) 

P1( m) = 1  for £m    ^ An 

= 0      for m I < m - £5m 

"*>% -^ h 
and 

sin 2n m i, 
F0 ( m) = -       1 

nm 

In examining Equation (VrI-2), we note that the convolution of F ( m) 

and Fg( m) degrades the edges of the ideal filter function and produces ripples in 

WH +- . pass-baM and stop-band. In the limit as X, becomes very large, F0( m) 

becomes an impulse and 
i -    ~ '  2 

convolution returns the ideal filter function. 

For a practical situation with a finite detector density, F ( m) will 

net be perfect, uit will exhibit the periodic maxir?^ and minima demonstrated in 

In addition to the distortion of the filter characteristic by truncation, 

or framing, the scene's apparent spectral content is distorted because of a second 

frame imposed by a finite focal plane. Assume a scene having a one-dimensional 

spectral distribution, G^ m). If the scene is franed by a function, Gp(x), where 
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'2 (x) = 1   for i2 < x < I, 

= 0   for £0 < x 

then ien the apparent frequency spectrum, G*( m), the the convolution of Q  ( m) and 

Gp( m}. That is 

G*( m) = G1( m)* G^  m) 

where 

(VI-5) 

GJ  m) ■:'    -j 2iimx 
cix 

= — sin 2-mi 
RS        2 

The true frequency spectrum of the scene is spread by G ( m). Clearly 

GgC m) sets a limit on both the resolution of spectral measurement and on the lowest 

spatial frequency measurable. In other words, if a scene contains two impulse 

functions in its spectral distribution these cannot be resolved if they are separated 

by a frequency less than j^ ,  because the frame blur^ the two impulse functions in 

the apparent spectral distribution. Furthermore, frequencies less than -^    cannot 
*2 

be resolved because they cannot be separated from the impulse always present in dc 

(the average level of a scene must be positive). 

The frequency spectrum of the signal at the output of the narrow-band 

filter is the product of F*( m), the effective filter function, and G*( m), the 

scene's apparent frequency spectrum. 

Notice that for the case where the scene Is scanned across the array, 

the weighting function is framed, but the scene is not. Spectral resolution, there- 

fore, is limited solely by the truncated weighting function and finite detector 

density. When the weights are scanned and the scene is fixed on the detectors 

ther- is the additional lindtatien of a framed scene. 
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In the following simulation experiment., the variable transmlssivlty of 

a photographic film weighted the intensity distribution of a scene. Mathematically, 

since such weighting can only be positive, tnis is equivalent to adding a positive 

constant to the weighting function. Comparing with Equation (VT-2) 

F„., ( m) = |    ~- sin (nänx)  cos 2nm x + D e~J ^^ dx film      " .      inx c    J 
-h 

= P*( m) + — sin 2-tmi, 
nm        1 

{n-k) 

The constant, D, must be larger than 2ä m to keep ff  (x) positive. The 

new term, — sin 2ms&^f  is centered at m = 0, and it distorts the filter's low 

frequency characteristic. 

C.   SIMULATION EXPERIMENT 

The experiment simulating the frequency analyzer is Illustrated by 

Figure 16. As mentioned above, photographic film replaced the scanned weighting 

function. The 55-mm film was driven by a slow-moving transport across the image 

__    plane of a camera. A photomultiplier behind the film collected the light from the 

weighted scene. This signal was plotted by a pen-recorder. 

One problem in the simulation was construction of a film transmissivlty 

proportional to the desired one-dimensional narrow-band characteristic. Figure IT 

illustrates the procedure used; note how the desired function is plotted in the 
11 

form of a silhouette.  By using a cylindrical lens, each vertical line image 

appearing at the film plane of the view camera has an intensity proportional to 

the total illumination of the corresponding line at the silhouette. The vertical 

cylindrical lens, in other words, images every point on a vertical line in object 

space to every point in a vertical line in image space. 

A negative constructed in this fashion is shown in Figure 1-3. This 

negative was then used to construct a positive transparency on 55-mm film. In 

processing both the negative and positive it was necessary to develop to a 7 = 1 

to maintain linearity. 
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The figures illustrating the film processing show that the filter chosen 

extended only to the first minimuTn of the envelope, that is, to where 

n&al    = n   and   X, = -— 
1 i   üiü 

Also /an was chosen such that 

£S = o.i 
m 
c 

and 

deferring to Equations (VI-2) and Yl-h) 

FP^ m) = ^ sin 2°« ~ (VI-8) 

and 

c 

*        #      0.2in 
F„.1m( m) = F ( is) 4 ——^ sin 207t -Ü1 

c 
,.,( m) = F ( m) -f —^ sin 20n -2 f^) 

0.2m 
The tern,    ~  sin 20n — , is negligibly small. Therefore 

c 

Ff*lm( m) ^ F*( m) (VI-10) 

Also, since ^2 ^ &1  (*>ecause ^"th are the length of a 35-mm frame), 

G2( m) = ^ Sin ^ if ^.11) 
c 

mm 
Three "picket fence" scenes with frequencies m , S; ,  and ~ , and the 

resultant signals t/hen scanned with the film band-pnss filter are shown in Figures 

19, 20,  and 21. The effect of framing the scenes :...., G2( m) is seen in the 
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gradual increase and decrease of the trace at the beginning and end of the scan. 

Theoretically a picket fence of frequency, -~ , contains no energy in its second 

harmonic, m . However, the cumulative errors in the spectral measurement produce 

a small signal at E in Figure 20. 
m 

A picket fence of frequency, —, should contain a signal at m with an 

amplitude one third that of the fundamental. Figures 19 and 21 illustrate the 

5:1 amplitude ratio of tne m components. 

The high frequency "hash" at the edges of the traces are presumed due 

to the effect of transparent tape attaching opaque backing at the edges of the 

filter function. 

. ,    In the film simulation, the following suggestions may be considered for 

future work: 

1. As noted earlier, by exposing the film with too much contrast 

the film is driven beyond the linear region. A reduction in contrast would make 

a measurable improvement in the filter function. 

2. A more exact simulation could be made by imitating the finite 

detector density with steps in the silhouette function. 

5.   By splicing together various strips of film, it should be possible 

to enlarge the length of the filter function, i.e., incn-ase I  .    This also shoild 

make it possible to reduce er+raneous effects such as the very high frequency 

noise. 

k.        A  complete set of bandpass filters and test patterns might be 

constructed to explore completely the potential of the frequency analyzer principle. 

It is also possible to use two separate films in a beam splitter, with 

one beam for positive weights and one for negative weights. The outputs of the two 

are subtracted to get an exact equivalent weighting function, thus eliminating the 

d-c term in the original function. 
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VII. ADAPTIVE WEIGHTING 

As described in the report, there are numerous parameters which affect the 

performance of a spatial filter including detector width, number of detectors, 

detector gaps, detector density function, and optical system transfer f'mction. 

As the analysis of these parameters combined is cumbersome, this studj' was directed 

toward evalus^ing the effect of esch parameter independently in the overall filter 

response. An optimum design for a specific filter function should enjoy the 

flexibility of varying these parameters simultaneously. 

The design of a practical detector array may become more complex, however, 

if the non-uniformities of detector response and telescope transfer function as 

well as detector width and gap tolerances are to be considered functions of the 

f cal plane dimensions. These difficulties and attendant problems can be avoided 

or minimizei by applying the adaptive learning technique in the design of these 

filters. This scheme would entail placing an array of detectors in the focal plane 

of a telescope. Each detector signal would be fed to a variable weighting element 

which would be adjusted by the signal of a comparator network. The comparator 

would sense the difference between the actual output of the detector array and a 

described output for a prescribed input function. The weighing element would be 

adjusted repeatedly until the difference becomes zero.    At this time, the weighting 

function values would be fixed. A sequential and iterative process thus could be 

employed to realize a filter with prescribed frequency response characteristics. 

Future work should include the feasibility evaluation of adaptive learning 

techniques for realization of the spatial filters. 
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F(ü) 

(J= 2rm (RADIANS PER UNIT LENGTH) WHERE 
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APPENDIX A 

# 
SPATIAL FILTER SYNTHESIS' 

By K. Seyrafi and G. A. Daviscn 

ABSTRACT 

I 
I 

I * 
m Paper presented at the 10th National IRIS. The work was per- 

formed under a subcontract fron General Precision, Inc., Libra- 
am scope Division, and supported by AFSC Space Systems Division. 

Report No. 2985 

Design and synthesis of one-dimensional low-pass and 
band-pass spatial ? -.Iters are developed by approximating the 
space domain transient response of the filters with rectangular 
detectors. The  transforms of the approximating functions are 
derived analytically. Numerical solutions to the function are 
obtained through the use of a computer. The results indicate that 
for reasoneble tolerances in the pass-band or stop-band, a small 
number of detectors is sufficient. 
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I.   INTRODUCTION 

Once It is given, the transfer function of an  electrical network can generally 

be realized by a proper combination of lumped passive elements (resistors, capaci- 

tors, and inductors) and active elements such as vacuum tubes and transistors (Ref- 

erences 1, 2 and 3)• The exact configuration and number of necessary elements is 

determined by the required pass-band and stop-band character ^stics (e.g., ripple 

and rate of attenuation). These requirements have led to systematic design pro- 

cedures, such as Chebycheff (equal-ripple), and Butterworth (meximally flat) filters. 

There are also systematic procedures for realizing filter designs. 

A similar design and synthesis has not yet been developed for space filter- 

ing, although the application of two-dimensional Fourier transforms to spatial fil- 

tering has been studied in sane detail, and there has been empirical design in low- 

and band-pass spatial filters (Reference k).    There is no simple analogy between 

the concept of electrical filter elements and synthesis, and space filters, such 

that one is able to extend the well-systematized techniques of electrical-circuit 

synthesis to spatial-filter synthesis. However, one can apply the approximation 

techniques useo. to find the transfer function of an electrical filter when the im- 

pulse response is known. The time impulse response can be approximated by a series 

of triangular or rectangular pulses (References 5 Bud. 6). The transfer function 

is found by summing the transfer functions of the elemental pulses, each with its 

corresponding: delay. 

The following discuseion employs a suggestion of J. A. Jamieson to approxi- 

mate the transfer function of a spatial filter using an eneeoible of rectangular de- 

tectors, and it develops a method similar to the  tine-function approximation. A 

systematic scheme is thereby proposed for designing and synthesizing low-pass and 

band-pass spatial filters using a variable number of resolution elements or detec- 

ors. The outputs of the detectors Are  weighted according to their position in the 
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image plane, and are then summed.  It is shown that by increasing the number of 

detectors or resolution elements, one can approximate the desired transfer function 

with arbitrary accuracy, which is analogous to increasing the number of elements 

in an electrical filter. 

XI.   PRINCIFLE OF APPROACH 

A.   LOW PASS 

1.   Derivation 

We begin by examining an ideal one-dimensional lov-pass spatial 

filter with a flat response of unity out to the frequency m = m cycles/unit length 

and thereafter a zero response, as shown in Figure 1A. The inverse Fourier trans- 

form of this function, which is the spatial impulse response, has the characteris- 

tic shown in Figure IB. 

The curve, f(x), of Figure IB can be approximated by an infinite 

set of rectangular pulses with a uniform width, W. A summation of the transforms 

of the rectangular pulses is an approximation to F(jm) and in the limit as W —1 0, 

is equal to it. The realization of each pulse is simply a detector of width W and 

a sensitivity proportional to the pulse height (Figure 2). 

The  amplitude of the ith pulse, A, (Figure 2), is: 

1    sin(2i-l) |2flmc 

A.   = —  fov i an integer (l) 
1      * (21-1) I 

Therefore,,  the pulse can be represented in the space domain by 

f (x) where ^ 
,     sm —T—    w2 nm 

1 * (2i-l) I 

=0 x   <   (i-1) W 

x   > iW 
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The approximation of f(x) will therefore be: 

i = oo 

f(x)c* V  i^U) W 

i = - oo 

Practically, it is net possible to incorporate an infinite number of detectors. 

But because of x.he  attenuating effect of the SX^,  X factor for high values of x, 

the ampuit^de of the pulses becomes increasingly smaller and smaller, such that 

elimination of those detectors has slight effect on the transfer function. There- 

fore, if we truncate the approx at ion after n det'.- tors  and denote the truncation 

function by f* (x), we have: 

i = +n 

f* (x) =\     f^x) (U) 

i = 1-n 

The Fourier transform of f (x), namely F (jm) will be the sum of the individual 

transforms of f (x) 

F*(jm) 

+n 

sin 

■1= 
i=l-n 

2i-l ,,  0 

2    c 
sin 2nm |    r^Xd-) W -J (a«"«)) 

w        w 
(2i-l) 5        2ran ^ 

.w —^ eLV^ 7 (5) 
2 

As F*(jm) is an even function of m, the exponential factor can be reduced to a 

cosine function. 
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F*(jm)  = ■I ; 
i = 1 

sm 2i-l 
L   2 
(2i-l)   W 

Wm    2IT 
c sin gsffl j 

2 cos ~i W 2itiii 

By rearranging the terms of Equation (6),  we can write 

F*(jm)  = I ^    sin nm W 
fl      nmW 

sm (f=i)w 2OTo. cos (i|ii) w 2™ 

i=l 
(2i<r 

(6) 

(7) 

since 

sin       (^~) W 2jan 
c c cos 

2i-l 
W 27tm 

sin    (2i-l)jTW (a +m) + sin {2i-l)itW (m -a) 

(8) 
Equation (?) can also be writt en as 

F*(jm)  = -    lin mg. 
n      ranW 

n r 
Y^ sin    (21-1)  nW (flic+m)J + sin I (2i-l)   ÄW (m -m) 
/L - ~wnT —£-J- 
i=l 

(9) 

which  is a parametric approximation to an ideal one-dimensional low-pass  spatial 
filter. 

2.        Theoretical Discussio- 

The truncated^  finite-detector, low-pass equation nae several 

interesting properties that can be predicted analytically and are confirmed by tne 

numerical results.    In the limit as tne truncation point moves out to infinity and 

as the detector 3ize approaches zero, the space filter function approaches tne ideal 
low-pass case. 
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v   .       sin .UKW 
^        -    "3^— >  which we call tne envelope function,  and 

4/(m)  =      \ sin (2i-l) WÄmc cos  (2i-l) Wmn L 2i.-l 
1 

which we call the 

edge function. 

It can be seen that the envelope function (F gure 5A) will cause 

the  filter function to go to  zero at erery frequency m ~ — for which a is an  integer. 

The edge function,   y (m), which  is a sunanation of odd cosines,   is shown in Figure 

5B,     The edge  function has a maximum at ffi = ?? for even values  of a,  and a minimum 

at § for odd values of Q.    The fulter function,  F*(jm)  = -   QM^/im),  will there- 

fore    have a maximum and minimiim on either side of each r;.    These harmonic maxima 
w 

and miniii^L can be seen later in the numerical curves.    The effect of using increas- 

ingly smaller detectors  (decreasing W)  should therefore be to move the harmonic 

pairs of maxima and minima farther apart. 

As n is increased and additional odd cosine functions are in- 

cluded in the edge function summation,  the slope of the filter function will break 

more rapidly before and after each narmonic pair.    Indeed,   it is easily seen that 
the summation. 

=1 a4„  Co*  i\ , ^        cos(2i-l) Mm 
sin (21-1; wjaa,       2i^l  

1=1 

is very similar to the Fourier summation for a square wave having a period, -, 

00 

•if sin (21-1) I cos (21-1) Wnm 
2^ 

1=1 
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For those situations where Wm =0.5, the curves are periodic 

square wave approximations modified ty theS " y   factor and limited by n terras. 

For the curves where Wmc < 0.5, the coefficients are no longer exact. The effect. 

of extending the truncation point should be therefore an increasingly sharper slope 

at the cutoff frequency, m , and also at the harmonic maxima-minima. 

From Fig-are IB it can be seen that the maximum usable detector 

width, W, would be ■^— .    A  larger detector width could not approximate the periodic 

sin 2nm x 
nature of the — function. 

B.   BAND PASS 

1.   Derivation 

The mathematics developed in the previous section was for a low- 

pass filter. A band-pass filter can be obtpined from the difference of two low- 

pass filters. 

For a band-pass filter with a center frequency, m , and band- 

width, £m, we can assume that the filter is the subtraction of two lew-pass filters 

one with cutoff frequency of m - — and the other with cutoff frequency of 

m
c 

+ ~2' By the principle of superposition of a function and its transform, we can 

write the inverse transform of the band-pass filter as: 

f{x) - i 
in 2T((mc + —}  x      sin 2s(iaQ  - g^; x 1_ 

nx 2 cos 2nm x sin TTATCX (10) 

f(x)  - 
2 sin n^anx 

nx 
cos 2nm x = c 

2£ci    sin ftgflix 
n        Ämx 

cos 2jan x 
c (11) 

2. Theoretical Discussion 

Equation  (11)  reduces to a low-pass filter for a center frequency, m 
mc = 0, and will have

0-^—  characteristics. When ~j- is large compared to 1, f(x) 

behaves like a cosine function (cos 2jan x) damped by a modul ' Ing s  x function. 
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As the bandwidth of the filter decreases, s-^-^S£ wili have Xess damping effect. 

Therefore,  tenns for large values  of x cannot be neglected.    The detectors farther 

from the center will weigh more heavily,  while the center detector weighting co- 

efficients or detector sensitivities will be smaller.    On the other hand,   if 
m 
— is  small,   the clamping effect will  dominate,   and a few detectors near the center 

would be sufficient. 

From Equation (li),   it is seen that the inverse transform of the 

band-pass filter is a "carrier" of frequency 2im  .  amplitude-modulated by a 

"signal"  of n£m.     The maximum detector widtn usable  is determined by the center 

frequency,  and is equal to r  .    Larger width detectort would not fit b^xween all 
■T in c 

the zeros of the filter function, äa, the bandwidth, should determine the trunca- 

tion point, since for smaller bandwidths, the cutoff rate becomes increasingly im- 

portant. 

III.     NUMERICAL SOLUTION 

Computing F* (jm) by hand would have been very tedious.    Therefore,  an IBM 

709^ was used    o make a numerical computation.     Since  it seemed desirable to evalu- 

ate the effects of truncation and detector width separately,  a doubly parametic 

series of curves was chosen.     One parameter is the normalized detector width,  Wm  ■ 

The second parameter is the normalized truncation pointy x^  . 

A. LOW PASS 

Assuming a low-pass filter with a cutoff frequency,  m ,  the zeros of 
k 

2m 

c 

f(x)  appear at x = •r— ,  where k is an integer ranging frcm 1 to 02 .    Normalized de- 

tector widths of Wm   equal to 0.05,  0.1, 0.25,  and 0.5 were chosen (see Figure 2), 

and also normalized truncation points x^m    equal to 1.0,  2.0,  and k.Q.    The results 

ere shown in Figures J+,5,  and 5. 

1.        Effect of Detector Width 

For a given truncation point, for example, x« m    • 1 (see Figure 

<+;,  the approximation ie recognizable, tut not  good when only four detectors (2 

each side, Wm   - 0.5) are used.    As the number of detectors is increased, the ap- 

proximation is improved, particularly in the stop-band, because the harmonic maxima- 

minima are moved to larger values of m where they are attenuated.    However,  Increasing 
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the number of detectors effects a diminishing gain in pass-band approximation ac- 

curacy. Again, referring to Figure h,  the improvement is considerable when the 

number is increased from k  to 8, but barely discernible when increased from 20 to 

kO,  and the small gain hardly justifies the numerical increase in let ctors. This 

effect is independent of truncation point as seen from Figures 5 and 6. 

P.   Effect of Truncation Point 

For a fixed detector width (e.g.,  Wm    = 0.5),  an increase in the 

truncation point such as shown in Figures k,   5,  and 6,  causes the slope at the cut- 

off point to become sharper and sharper,  and the number of ripples in the bass-band 

to increase.    For a truncation of x^m    equal to only 1,  the bass-band response is 

relatively smooth. 

3-        Practical Application of Results 

In selecting the proper filter characteristics for a specific 

application, both the pass-band and the stop-band requirements must be specified. 

The detector size will result from the permissible behavior in both the pass-band 

and the stop-band.    If the first harmonic maxima-minima must be a given number of 

octaves from m ,  the detector size is chosen accordingly.    Pass-band ripple magni- 

tude will also establish detector size.     If a given cutoff rate is desired,  the 

truncation point is established. 

B. BAND PASS 

Since the band-pass filter equation is derived from the difference of 

two low-pass equations,  the band-pass curves can be very nearly predicted fron the 

difference of two scaled low-pass filter curves.    Four normalized detector widths 

(0.25,  0.125, 0.05, and 0,025) were chosen for the numerical band-pass filter 

characteristic.     Two bandpasses  - a narrow band (-— = 0.2)  and a wide band (— = l.O) 
c c 

were Investigated.   Truncation points   .f 1,  2,  and k were used for the wide band, 

while values of 5,  10,  and 20 were used for the narrow band. 

1.        Effect of Detector Width 

"ram Figures T through 12 it can be seen for both the wide and 

the narrow bands that as the detector width decreases,  the harmonic maxima and minima 
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spread and reduce  in magnitude,   in a fashion similar to that  for the low-pass  curves. 

The stop-band in the region through 8 m    y.which is more than 2 octaves above the 

cutoff frequency)  for the smaller detectors whe.te Wm^  is equal to 0.05 and 0.025, 

is effectively zero.     Above 8 m ,  hovever,   there are periodic maxima and minima 

whose magnitudes are less  than 0.2 and which become  smaller with  increasing m. 

When the lower resolution detectors are used (i.e., Wm    = 0.25 and 0.125 unit lengths) 
'  c 

th=i approximation is very sensitive to detector width.  For the smaller detectors 

where Wm = 0.05 and 0.025, the approximation improvement - particularly in the 

pass band - becomes negligible. Figures T through 12 all illustrate the diminish- 

ing effect of decreasing detector width for fixed truncation. 

2. Effect of Truncetion Point 

Here also the results are what might be expected from extending 

the low-pass case.  Increasing the truncation point sharpens the edges of the pass- 

band characteristics and also increases the number of ripples in the pass band. 

For the maximum detector width of Wm., =0.25 (see the wide-band filter, Figures 1, 

8, and 9)j the pass band exhibits an average decreasing magnitude for the larger 

truncations, though not for the minimum truncation of x^m. ~  1. This "slump" in 

the pass band is corrected by using smaller detector widths. Truncation and de- 

tector width therefore cannot be considered as having entirely independent effects. 

3. Practical Application of Results 

Narrow-band spatial filters would be vt-ry useful in making spatial 

frequency measurements. An instrument could be constructed using variable weights 

for each detector channel, and could thereby be made to measure a set of frequency 

bands m turn.  If is encouraging that even for minimum truncation, ^Wn = 5 (see 

Figure 10), a good narrow band pass can be obtained, even though it does not well 

approximate the square-sided ideal. For larger truncations and more detectors, the 

approximation is excellent. 

IV.  CONCLUSION 

The synthesis of two basic one-dimensional spatial filters, low-pass and band- 

pass, using an array of detectors has been demonstrated. The synthesis is truly 

spatial in  at there is no functional dependence 'n time, and therefore the filter 

characteristic is independent of fluctuations in rate of scanning mechanisms. 
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The output signal of a spatial filter is proportional to the spectral power of the 

observed scene within the pass band of the filter. 

Although only the two basic filters were discussed, finite size detectors 

make it possible for almost any finite bandwidth filter characteristic to be ap- 

proximated and synthesized by this method. A specific application would involve 

design of a filter to best discriminate against its particular background distri- 

bution. Any such general filter approximation would be dependent on the individual 

detector field-of-view and also on the field-of-view f the array. A practical 

utilization of such a filter would amplify each output separately (because of 

signal-to-noise arguments), weight the outputs, and sum. 

If, by scanning a detector, the spatial function is described as a parametric 

function of time, then the filtering can be theoretically accomplished with a set 

of parallel delay lines and associated gains whose outputs are summed. This method 

is completely equivalent to using the detector-array spatial-filter synthesis, and 

results from the same principle. 
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.APPENDIX B 

FILTERS WITH CI^CUIAR SYMMEl'RY 

I.   TWO-DIMENSIONAL CIRCUIAE SYMMETRY LOW-PASS FILTER 

The synthesis of a two-dimensional low-pass filter with a cutoff frequency, 

fflCp on the x axis and a cutoff frequency, nic . on the y axis, was discussed in 

Section III. The cutoff frequency for any other axis is the intersection of that 

axis and the cube. 

For a circularly symmetric low-pass characteristic, that Is, one independent 

of the direction of scan, the response function is a cylinder in the frequency 

domain. The cylinder has a height, 1, for p< p where p is the radial frequency 

in any direction and p is the cutoff frequency. See Figure 8. 

The inverse transform of this function in polar form is f (r, 8) where 

rP. Hit 

i- (r, e) = P e 
jSixpr cos{9 - 0) 

d0 dp 

■n p Jo (2« pr) dp (B-l) 

o 

- T Ji '2" Pc r> 

(r, 9) is plotted in Figure 8. 
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Using annular detectors of width W and weight A., where the weight is taken 
W 

from the value of f (r, 9) at r  i o » 

2 P. 
iW ̂ J1 (n pc iW) (B-2) 

The inverse transform of each annular detector is 

F. (p, 0) 

- W 

(i-l)W 

2 P, 

«= P 
-^f   ^1  (« Pc iW) 2n  r J0 (-2n p r) dr 

J1   (n  pc iW). J1 (2n p iW) " (^j J^  P (i-l)w) 

(B-5) 

and 

n 

F* (p, 0) = ^ —^ Ji ^ Pc 
iW)^Ji ^  P iW) 

1=1   f L 
(T") Ji(27t p ^-1>WB 

II.  TWO-DIMENSIOML CIRCUIAE SYMMETRY EAKD-FÄSS FILTER 

For an annular band-pass between p - (Ap/2) and p + (op/2) the inverse 

transform, f (r, 9), is 

■, e) 

c   2 j 
2jT (pc + 2"]r 

Ap 
Pc --T" 271 K - f)r 

(B-5) 

With annular detectors of width, W,  the i      detector has a weight. A..,  of 

Ap 
21P_+ T C C 

A.   = 
l iVJ 

2n(p    + 'f]  iW 

Ap 

iW J-, dKlp L M IW (B-6) 
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and therefore 

7   u ^e 
F*  (p, 0 ) =   Vj    ■  \.w   -  ■ J1 

1=1 [ 
-(Pe + -r    xW 

4c 4) 
1W 2rt(pc-FjiW 

< J^Sn  p  iWJ   - ^j ^[2*  p   (1-1) W] ► 
(B-7) 

III. TWO-EIMENSIOM^ BAKD-PA5G WITH REOTANGUIAR SYMMETRY 

The t,fo-dimensional band-pass space function is the difference of two low- 

pass space functions. That is 

f (x, y) = \< 

sin 2n ^\ + Tijx 3in 2n (% + ¥) * 

si:- - f -  - —~ j x  sin 27t ( m  - ^r11 y 
Cl   2 / \ C2   2 / 

(B-8) 

The weight for a detector whose center Is located at x., y is 
X K. 

A. 
IK. 

Si 

/ Am\ W / 
n 2JI  fiac    + -~1  (21-1) ~    sin 2n    r 

A m_\ W. 
mr    +~^    (SK-!)^ 

(2i-l) W./2 (2k-1} W2/2 

sin 2n    m 
\    1 
(21-1) iyi 

-j (21-1) -     sin 2. ^ - ~ 
W,. 

^  (2K-1) f 

(2k-l) Wo/J 

(B-9) 

J 
and the transform of the array,  F    (^ ,  m  ) ij 
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j.     sin it ^ vr     sin n n^ w2   ^--,    ^ 

i=l    k=l 

^ffl\ w. 
sin 2« ( m^    + -p— j (2i-l) —    sin ifn | m 

A m^ W_ 

; 
■~    (2k-l) 

(21-1) (2k-l) 

, ^X w. 
sin2n(in      '-~ij(2i-l)^ c1    2 7 sin 2n 

/ A IIU\ W ' 

I«-    + -g"/ (2^-1) 7- 
VC2 

(2k-l) (2k-l) 

X      cos  (21-1) W    ?an    cos  (2k-l) W    m^ (B-10) 
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APPENDIX C 

RELATION BETWEEN MAXIMUM SLOPE OF SPATIAL 
FREQUENCY FUNCTIONS AM) MAXIMUM SCANNING DETECTOR DIMENSIONS 

We already know that the spatial fV^quency response functions of scanning 

array detectors do not exactly reproduce the desired functicis. A useful param- 

eter for characterizing quality of those spatial frequency functions that are 

designed to have band- or low-pass characteristics is the slope of F (UJ), that is 

dFlal . 
d u) 

When F (UJ) represents the Fourier transform of an arbitrary space-limited 

function, fCx), an interesting relationship, known as Bernstein's theorem, gives 

the maximum slope of F (a)) in terms of the width of f(x). Here we apply this 

theorem to one- and two-dimensional rectangular coordinat- Fourier transforms, 

and to the polar coordinate Fourier-Bessel transform (Hankel Transform). Its 

derivation is given by Arsac, who follows the work of Boas. 

For a one-dimensional Fourier transform the relationship is 

d F y I 
d m 

f L B (F) (c-i) 

where L represents the half-width of fi function f (x) that extends from -L to 

+L, and B (F) represents the maximum value of I F (üü)| • 

** 

J. Arsa^, Transformation de Fourier et Theorie des Distributions 
(Paris, Dunod, 1961), pp. 25Ü-259. - 

R. P. Boas, Entire Functions (New York, Academic Press, 1954), pp. 210, 211. 
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In two-dimensional rectangular coordinates 
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O uj   d Cli 
y 

<r L L  B (F) 
-  x y 

(C-2) 

where L and L represent maximum dimensions in x and y directions, 
x    y ^ 

For a circular function of "bounded domain, that is, a filter function con- 
2   2    2 

fined to the circle x + y < R 

I 
I 

I 

a F (^) 
< JT R B (F) (C-5) 

Although the slopes of tfce F (UJ) functions that result from the scanning 

weighted detector arrays will be less than the maxima given here, the bounds can 

be useful in guiding preliminary design. 

■ 
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AFPEMDIX D 

COMPARISON OF TRANSPARENCIES WITH ELECTRICALLY WEIGHTED DETECTOR ARRAYS 

Since most of this report uses the ideal low-pass spatial frequency filter 

as an example for specific discussion, we shall use it here also. Thus, con- 

sider the function f(x) = (l/rt)(sin x/x); that is, the inverse Fourier transform 

of an ideal low-pass filter, shown in Figure A-1B. As described in Appendix A 

and shown in Figure A-2, an array of electrically weighted detectors approximates 

f(x) = (l/n)(sin x/x) by a number of rectangles, each representing one detector. 

The height of a rectangle corresponds to the electrical weighting of its detector 

and can be positive or negative, the negative weighting realizable by electrical 

inversion. 

Instead of an array of detectors forming f(x) - (l/n)(sin x/x), why not 

cover a single detector with a screen of prescribed, variable transmission, 

T(x) = (sin x/x)? The obvious objection is, of course, the fact that T(x) can 

have only positive transmission; that is, 0 < T(x) < 1. As we show here, there 

are ways to get around this difficulty, but first let us point out the limitation 

that a positive function imposes on its Fourier transform 

This limitation is clearly seen by examining the Fourier transform. Assume 

that f(x) has been normalized so that 

J+co 

f(x) dx = 1 (D-l) 
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Then from 

r-i-' 

Hm)   = f(x) 
'lyjX 

dx (D-2) 

we see at once that F(o) - 1.    Next, 

F(a>)   < 

+ 03 

f(x)   € 
-i<ijx 

dx < 

^ + <! 

f(x) U'1^!    l.X   < f(x) dx = 1 (B-5) 

using the fact that f(x) is real and positive. Thus, F(u;)|< F(0); this means 

that, in a, strict sense, F(UJ) cannot form a high-pass filter function. The 

qualification is needed because F(UJ) can have a greater magnitude at a higher 

frequency that at some lower one. A noteworthy case in which F(u)) acts as a 

band-pass filter, though it is the Fourier transform of a positive function, 

arises when 

f(x) 
1 + COS m  X 

O 
-L < x < L 

(D- ) 

Its transform 

F(üü) L < + ö 
sin im-mQ)l* 

('X"'Jü0)L 

sin (u)-hj)0)L 

(D-5} 

amoimts to a pair of (sin x/'x) functions centered at tu    and -gj , and a larger 
o     o 

(sin x/x) centered at rn = 0 with twice the anrolitude of the pair at tu    and -m . 

Thus, F(u}) can be considered as a band-pass function; but the large amplitude 

pass-band at (» = 0 distinguishes F((u) from what an electrical engineer might 

conventionally consider as a band-pass filter. 

While the foregoing example does indeed show how a positive function can, 

in a restricted sense, act as a band-pass filter, it is in fact an exceptional 

case. Consequently, we return to the discussion of how to realize negative 

transmission. 
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Recent vork *      has shovn some practical schemes that provide negative 

transmission in image processing experiments. But this work is conctrned with 

processing in which the negative transmittance effect precedes photographic 

recording of the processed image. Our need for negative transmission is easier 

to satisfy because the electrical outputs of separate detectors can be subtracted 

just as easily as added, whereas in ehe work referenced above, subtraction uses 

either the Herschel effect in which long wavelength light erases an image that 
AUL 

has previously been formed with shorter wavelength light ; or, a fluorescent 

screen which brightens under ultraviolet radiation and darkens under infrared. 

With two electrical detectors, negative transmission can be achieved in the 

following way. Fiom t (x,y), the desired transmission function, form the two 

positive functions t+ (x,y) and t_ (x,y), where t (x,y) = t. (x,y) - t_ (x,y), 

defined as 

t+ (x,y) = 
t (x,y) where t (x,y)>0 

elsewhere 
(d-6) 

t_ (x,y) = I 
t (x,y)  vhere t (x,y)<0 

elsewhere 
(D-T) 

Next, construct transparencies representing these functions. Then simply split 

the image illumination into two identical beams; send one beam through t (x,y) 

onto a detector whose output has the electrical weight of plus one; send the 

other beam through t_ (x,y) onto a detector whose output has the electrical 

weight of minus one; and, finally, suai the two detector outputs. This process 

can be described in terms of the Fourier transforms of the image and the trans- 

parencies as follows. 

*-* 
A. Trabka and P. G, Roetiing, J. Opt. Soc. Am.. 5k,  12U2 (196U). 

D. H. Kelly, J. Opt. Soc. Am.. 2I, 1095 (I96I). 
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Let 1  (m f m  ) represent the Fourier transforrr, of the image intensity. Let x  y 
T (üü , 0) ) represent the Fourier transform of the transmission function, where 

x  y ' 

x'    y'    + N x' y'   - v x' 5 
(D-8) 

corresponding to t (x, y) = t (x, y) - t_ (x, y). With 0 (yj , 9) ) the process + x  y 
transform, wo find 

ed 

x  y        x' y     x' y7    H (D-9) 

This equation summarizes the negative transmission process. 

Having described one way of realizing negative transmission, we now discuss 

some practical differences between such schemes and the electrically weighted 

detector array. First of all, the two-transparency filter reduces detector 

illumination, whereas electrical weighting allows each detector to receive full 

illumination. In those applicatic is in which detector and preamplifier (ampli- 

fication prior to summation of detector signals) noise is significant, the reduced 

detector signal of the two-transparency filter presents a disadvantage in com- 

parison with the electrically weighted detecto: array.  (We assume equal detector 

area in the two schemes, but factors which have been overlooked here may make this 

an unreasonable basis for comparison.) 

Electrically weighted detector arrays offer the advantage of flexibility in 

that their weighting, can be varied to give different spatial frequency filter 

functions.  It is conceivable that such filter function control could help to 

correct optical non-isoplanaticism. That is, if a filter had been designed to, 

in some prescribed manner, operate on an optical point spread function, and the 

spread function varied from place to place across the image, then an electrically 

controllable filter function could compensate such variations. 

Another advantage of electrically weighted detector arrays might arise if 

detectors had non-uniform gain. Thus, electrical weighting could compensate 

gain variations from detector to detector while simultaneously providing tue 

weighting demanded by the transmission function. 
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11 

Finallif, electrically -weighted detector arrays may some day serve in image 

processing systems that require filters with transmission functions that can be 

altered in response to changes in input images. The disadvantage in the inflexi- 

tdllty of the two-transparency filter is evident here, as well as in the two 

preceding applications. 

a 
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